Data Frames are data displayed in a format as a table.
Data Frames can have different types of data inside it. While the first column can be character
, the second and third can be numeric
or logical
. However, each column should have the same type of data.
Use the data.frame()
function to create a data frame:
# Create a data frame
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
# Print the data frame
Data_Frame
Try it Yourself »
Use the summary()
function to summarize the data from a Data Frame:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
Data_Frame
summary(Data_Frame)
Try it Yourself »
You will learn more about the summary()
function in the statistical part of the R tutorial.
We can use single brackets [ ]
, double brackets [[ ]]
or $
to access columns from a data frame:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
Data_Frame[1]
Data_Frame[["Training"]]
Data_Frame$Training
Try it Yourself »
Use the rbind()
function to add new rows in a Data Frame:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
# Add a new row
New_row_DF <- rbind(Data_Frame, c("Strength", 110, 110))
# Print the new row
New_row_DF
Try it Yourself »
Use the cbind()
function to add new columns in a Data Frame:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
# Add a new column
New_col_DF <- cbind(Data_Frame, Steps = c(1000, 6000, 2000))
# Print the new column
New_col_DF
Try it Yourself »
Use the c()
function to remove rows and columns in a Data Frame:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
# Remove the first row and column
Data_Frame_New <- Data_Frame[-c(1), -c(1)]
# Print the new data frame
Data_Frame_New
Try it Yourself »
Use the dim()
function to find the amount of rows and columns in a Data Frame:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
dim(Data_Frame)
Try it Yourself »
You can also use the ncol()
function to find the number of columns and nrow()
to find the number of rows:
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
ncol(Data_Frame)
nrow(Data_Frame)
Try it Yourself »
Use the length()
function to find the number of columns in a Data Frame (similar to ncol()
):
Data_Frame <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
length(Data_Frame)
Try it Yourself »
Use the rbind()
function to combine two or more data frames in R vertically:
Data_Frame1 <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
Data_Frame2 <- data.frame (
Training = c("Stamina", "Stamina", "Strength"),
Pulse = c(140, 150, 160),
Duration = c(30, 30, 20)
)
New_Data_Frame <- rbind(Data_Frame1, Data_Frame2)
New_Data_Frame
Try it Yourself »
And use the cbind()
function to combine two or more data frames in R horizontally:
Data_Frame3 <- data.frame (
Training = c("Strength", "Stamina", "Other"),
Pulse = c(100, 150, 120),
Duration = c(60, 30, 45)
)
Data_Frame4 <- data.frame (
Steps = c(3000, 6000, 2000),
Calories = c(300, 400, 300)
)
New_Data_Frame1 <- cbind(Data_Frame3, Data_Frame4)
New_Data_Frame1
Try it Yourself »