A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array, or a table with rows and columns.
Create a simple Pandas DataFrame:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
#load data into a DataFrame object:
df = pd.DataFrame(data)
print(df)
calories duration 0 420 50 1 380 40 2 390 45
As you can see from the result above, the DataFrame is like a table with rows and columns.
Pandas use the loc
attribute to return one or more specified row(s)
Return row 0:
#refer to the row index:
print(df.loc[0])
calories 420 duration 50 Name: 0, dtype: int64
Note: This example returns a Pandas Series.
Return row 0 and 1:
#use a list of indexes:
print(df.loc[[0, 1]])
calories duration 0 420 50 1 380 40
Note: When using []
, the result is a Pandas DataFrame.
With the index
argument, you can name your own indexes.
Add a list of names to give each row a name:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
print(df)
calories duration day1 420 50 day2 380 40 day3 390 45
Use the named index in the loc
attribute to return the specified row(s).
Return "day2":
#refer to the named index:
print(df.loc["day2"])
calories 380 duration 40 Name: day2, dtype: int64
If your data sets are stored in a file, Pandas can load them into a DataFrame.
Load a comma separated file (CSV file) into a DataFrame:
import pandas as pd
df = pd.read_csv('data.csv')
print(df)
Try it Yourself »
You will learn more about importing files in the next chapters.